Skip to main content

Finding Middle Node in Linked List

Linked List is dynamic data structure that is used to store information. Unlike arrays linked lists are not stored in contagious memory locations rather the are stored at any empty place in memory and the address of the next node is stored in the link field. Hence we don't have direct access to the Linked List elements as we do in arrays.

In order to find the middle node of the Linked List there are 2 methods

Method 1 : 
Traverse the Linked list count the number of nodes and then move a pointer to that node by using a counter. This method although useful requires us to traverse the List 2 times.

Method 2 : 
Use 2 pointers (say) fast and slow starting from the head node increment the fast pointer by 2 and increment the slow pointer by 1. In this way when the fast pointer reaches the end the slow pointer will point to the middle element.

To know more about Linked List and its implementation click Here.

The following is the implementation of the Method 2.  



C++ Program

Sample input and output to check the program





You might also be interested in 

Singly Linked List
Double Linked List
Linked List in Python
Stack Implementation using Linked List
Queue Implementation using Linked List
Infix to Prefix Conversion
Infix to Postfix Conversion
Binary Search Tree

Comments

Popular posts from this blog

Infix to Prefix conversion using Stack

This post is about conversion of Infix expression to Prefix conversion. For this conversion we take help of stack data structure, we need to push and pop the operators in and out of the stack.

Infix expressions are the expressions that we normally use,eg. 5+6-7; a+b*c etc. Prefix expressions are the expressions in which the 2 operands are preceded by the operator eg. -+567 , +a*bc etc.

This method is very similar to the method that we used to convert Infix to Postfix but the only difference is that here we need to reverse the input string before conversion and then reverse the final output string before displaying it.

NOTE: This changes one thing that is instead of encountering the opening bracket we now first encounter the closing bracket and we make changes accordingly in our code.

So, to convert an infix expression to a prefix expression we follow the below steps
(we have 2 string, 1st is the input infix expression string 2nd is the output string which is empty initially)


We first revers…

Hashing with Quadratic Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index.

A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below.



now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14

1 % 13 = 1

14 % 13 = 1

so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of collision.

Inorder…

Home Page