Skip to main content

Stack implementation using Linked List

Stack is a data structure it serves as a collection of elements. It has 2 principle operation push and pop.Stack works on the principle of  Last In First Out or LIFO i.e the element that is entered last is removed first. To do this is has 2 methods 
  1. push() :  push operation pushes the element on the top.
  2. pop() :  pop operation removes the element on the top.
This can be seen in  the below image.



Linked list is a simple linear data structure formed by collection of data elements called nodes. Each node consists of a data element and link field.The data field consists of element and link field consists of address of next element.


To know more about Stack Data Structure click here
To know more about Linked List click here
To view Simple Linked List implementation click here 
   
Now inorder to implement Stack using linked list we need to implement push and pop operation in Linked List. Push and pop can be implemented by using other already implemented functions of Linked List like addToStart, addToEnd and remove functions.

C++ Program

Sample input and output to check the program

You might Also be interested in

Queue implementation using Linked List
Linked List in Java
Linked List in c++
Binary Search Tree
Height of Binary Search Tree

Comments

Popular posts from this blog

Home Page

List of All Programs The Following is the List of all the programs on my Blog Math Programs Square Root of a number using Babylonian Method Finding The Next Smallest Palindrome Finding the Armstrong Numbers Factorial of a number GCD using Euclid's Algorithm Check if a number is Fibonacci Number or not LCM of 2 numbers Trailing Zeros in factorial of a number Sorting Algorithms Bubble Sort Algorithm Selection Sort Algorithm Insertion Sort Algorithm Shell Sort Algorithm Counting Sort Algorithm Linked List Programs Simple Singly Linked List Linked List in C++ Linked List in Python Linked List in Java Doubly Linked List Finding Kth element from the end of Linked List Delete a node from Linked List Delete Kth element from the end of Linked List Rotate Linked List in an Anti-clockwise direction Reversing first K nodes of a Linked List Binary Search Tree Left View of Binary Tree Righ...

Hashing with Quadratic Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...

Hashing with Linear Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...