Skip to main content

Infix to Postfix conversion using Stack

This post is about conversion of Infix expression to Postfix conversion. For this conversion we take help of stack data structure, we need to push and pop the operators in and out of the stack.

Infix expressions are the expressions that we normally use,eg. 5+6-7; a+b*c etc. Postfix expressions are the expressions in which the 2 operands are followed by the operator eg. 56+7- , abc*+ etc.

So inorder to convert an infix expression to a postfix expression we follow the below steps
(we have 2 string, 1st is the input infix expression string 2nd is the output string which is empty initially)

  1. We start by going through the characters of the infix expression one by one.
  2. If we come across an operand we simply copy it to the Postfix output string.
  3. If we come across any opening parenthesis we push it on the stack.
  4. If we come across any closing parenthesis we pop the stack till we find the corresponding opening parenthesis.
  5. If we come across an operator then we have 2 cases based on the precedence of the operators
    1. If the current operator has higher precedence than the stack top then we push the current operator on the stack.
    2. If the current operator has precedence less than or equal to the stack top then we pop the operator at the top and put it to the output string and then check the above condition again with the new stack top.
To see Simple Stack implementation program, click Here.

C Program

C++ Program

Sample input and output to check the program



You might also be interested in 

Bubble Sort
Insertion Sort
Selection sort
Shell Sort
Hashing with Linear Probing
Hashing with Quadratic Probing
Double Hashing
4 methods to swap 2 numbers

Comments

Popular posts from this blog

Home Page

List of All Programs The Following is the List of all the programs on my Blog Math Programs Square Root of a number using Babylonian Method Finding The Next Smallest Palindrome Finding the Armstrong Numbers Factorial of a number GCD using Euclid's Algorithm Check if a number is Fibonacci Number or not LCM of 2 numbers Trailing Zeros in factorial of a number Sorting Algorithms Bubble Sort Algorithm Selection Sort Algorithm Insertion Sort Algorithm Shell Sort Algorithm Counting Sort Algorithm Linked List Programs Simple Singly Linked List Linked List in C++ Linked List in Python Linked List in Java Doubly Linked List Finding Kth element from the end of Linked List Delete a node from Linked List Delete Kth element from the end of Linked List Rotate Linked List in an Anti-clockwise direction Reversing first K nodes of a Linked List Binary Search Tree Left View of Binary Tree Righ...

Hashing with Quadratic Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...

Hashing with Linear Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...