Skip to main content

Linked List in python

Linked list is a simple linear data structure formed by collection of data elements called nodes. Each node consists of a data element and link field.




There is a head node that points to the starting of the linked list.
this diagram shows a simple representation of the linked list.





Linked list can be used to implement stacks, queues, list, associative arrays, etc. 

Unlike arrays linked lists are not stored in contagious memory locations rather the are stored at any empty place in memory and the address of the next node is stored in the link field.
Also you don't need to declare the size of the linked list at the time of initialization you can dynamically keep adding elements to the linked list.

Click for complete information on Linked List 

The following implementation of the linked list has the following methods implemented :
  1. isEmpty() : Returns true if the Linked List is empty.
  2. addToStart() : Adds elements at the start of the linked List.
  3. addToEnd() : Adds elements at the end of the Linked List.
  4. display() : Prints all the contents.
  5. length() : returns the size of the Linked list.
  6. index() : returns the index(position) of element.
  7. remove() : removes element from the Linked List.
  8. Min() : returns the min value.
  9. Max() : returns the max value.
  10. push() : appends element at the end.
  11. pop() : removes the last element.
  12. atIndex() : returns element at given index.
  13. copy() : returns a copy of the Linked List.
  14. clear() : removes all elements.
  15. count() : returns count of occurrences of an element.
  16. sort() : sorts the Linked List.
  17. toString() : returns a String of Linked List elements.
  18. toSet() : returns a Set of all the elements of the Linked List. 
  19. reverse() : reverses Linked List.
  20. toList() : returns list(python list) of elements.
Also if you want to contribute to the below program please go to the following Github link : Linked-List-in-Python


Sample input and output to check the program



You might also be interested in

Comments

Post a Comment

Popular posts from this blog

Home Page

List of All Programs The Following is the List of all the programs on my Blog Math Programs Square Root of a number using Babylonian Method Finding The Next Smallest Palindrome Finding the Armstrong Numbers Factorial of a number GCD using Euclid's Algorithm Check if a number is Fibonacci Number or not LCM of 2 numbers Trailing Zeros in factorial of a number Sorting Algorithms Bubble Sort Algorithm Selection Sort Algorithm Insertion Sort Algorithm Shell Sort Algorithm Counting Sort Algorithm Linked List Programs Simple Singly Linked List Linked List in C++ Linked List in Python Linked List in Java Doubly Linked List Finding Kth element from the end of Linked List Delete a node from Linked List Delete Kth element from the end of Linked List Rotate Linked List in an Anti-clockwise direction Reversing first K nodes of a Linked List Binary Search Tree Left View of Binary Tree Righ...

Hashing with Quadratic Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...

Hashing with Linear Probing

Hashing is a technique used for storing , searching and removing elements in almost constant time. Hashing is done with help of a hash function that generates index for a given input, then this index can be used to search the elements, store an element, or remove that element from that index. A hash function is a function that is used to map the data elements to their position in the data structure used. For example if we use an array to store the integer elements then the hash function will generate position for each element so that searching, storing and removing operation on the array can be done in constant time that is independent of the number of elements in the array. For better look at the example below. now we face a problem if for 2 numbers same position is generated example consider elements 1 and 14 1 % 13 = 1 14 % 13 = 1 so when we get 1 we store it at the first position, but when we get 14 we see that the position 1 is already taken, this is a case of colli...